Low-energy fixed points of random quantum spin chains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-energy fixed points of random Heisenberg models

The effect of quenched disorder on the low-energy and low-temperature properties of various twoand three-dimensional Heisenberg models is studied by a numerical strong disorder renormalization-group method. For strong enough disorder we have identified two relevant fixed points, in which the gap exponent, v , describing the low-energy tail of the gap distribution P(D);D is independent of disord...

متن کامل

Random Spin-1 Quantum Chains

We study disordered spin-1 quantum chains with random exchange and biquadratic interactions using a real space renormalization group approach. We find that the dimerized phase of the pure biquadratic model is unstable and gives rise to a random singlet phase in the presence of weak disorder. In the Haldane region of the phase diagram we obtain a quite different behavior.

متن کامل

Low-energy properties of aperiodic quantum spin chains.

We investigate the low-energy properties of antiferromagnetic quantum XXZ spin chains with couplings following two-letter aperiodic sequences, by an adaptation of the Ma-Dasgupta-Hu renormalization-group method. For a given aperiodic sequence, we argue that, in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic prop...

متن کامل

Density Profiles in Random Quantum Spin Chains

We consider random transverse-field Ising spin chains and study the magnetization and the energydensity profiles by numerically exact calculations in rather large finite systems (L # 128). Using different boundary conditions (free, fixed, and mixed) the numerical data collapse to scaling functions, which are very accurately described by simple analytic expressions. The average magnetization pro...

متن کامل

Twist Boundary Conditions of Quantum Spin Chains near the Gaussian Fixed Points

Duality transformation, which relates a high-temperature phase to a low-temperature one, is used exactly to determine the critical point for several models (2D Ising, Potts, Ashkin-Teller, 8-vertex), as the self dual condition. By changing boundary condition, numerically we can determine the self-dual(critical) point of the Ashkin-Teller(or Gaussian) model. This is the first explicit applicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 1997

ISSN: 0163-1829,1095-3795

DOI: 10.1103/physrevb.55.12578